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We will analyse the problem described in article [ 11 and dealing with the 

determination of an optimal trajectory. In our work we will observe the 

same terminology and the same system of notations as those used in [ 11. 

In Section 4 of [ 11 those sufficient conditions (Theorem 4.1) are indi- 

cated which are such that a trajectory x(x0, t, WO) in the system of 

equations 

is locally optimal (in the sense of definition 4.1 in 1 lf 1 in respect of 

the admissible governing functions 77 ( t), constrained by the condition 

i-q (C)i 64 1 (2) 

Apart from conditions 1 to 4 (which are analogous to conditions given 
by the principle of a maximum [ 21 1, Theorem 4.1 of [ 11 contains some 

other limitations (shown by expression 51 on the second derivatives of 

d2 fi/dXjdXk' It is the aim of this note to prove that, without these 
additional limitations, conditions 1 to 4 of [ 11 fail to produce a locally 

optimal trajectory x(x0, t, q'), and that even these conditions are in- 
sufficient for the trajectory to become optimal in respect of small 

variations of function no(t) constrained by condition (2). 

Let us now analyse the system of equations 

where a1 and a2 are some nonlinear, sufficiently smooth functions which 
will be presented below, Together with this nonlinear system (3) we will 
analyse an auxiliary linear system of equations 

(4) 

It is known [ 31 that the optimal trajectory of the linear system (4). 
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which connects point 5 = - 3, 5 = 0 with point 4 = 0, 5 = 0 (under the 

limitations imposed by (2)), is as shown on Fig. 1. In Fig. 1 line AR re- 

presents a circular arc with its center at point (1, 0), BC represents a 

circular arc with its center at point (-1, 0), and CO represents a 

circular arc with its center at point (1, 0). The corresponding optimal 

governing function q’(t) has the form 

yio (t) = -sign [sin (t - Jlo)] 

Let us designate by ~(6, 5) the distance from point (e, 5) to point 
(e = - 1, 5 = 01, by $(t, 5) the angle between axis [ = 0 and a ray 

connecting point (5 = - 1, [ = 0) with point (t. [), by I,‘J(~, 5) the angle 

between axis < = 0 and a ray from point (6 = 1, 5 = 0) to point (5, [).. 

We can now determine the functions ~~(5, 0, ~~(5, [) in the following 

manner: 
ai SO, a250 

everywhere outside. of zone G enclosed by rays 4 = n/4, $2 = 38/4 (zone 

G is crosshatched in Fig. 1); within zone G functions ai and a2 are de- 

termined by formulas 

al (5, 5) = h5p4 (P - ~0)~ exp [((P - 91) (Ip - cpz)l-’ 

a2(E, C) =--ok+ I)(P--Po)~P~ exP[('P--%) CT-- ffa)l-’ (5) 

Here w = const > 0 and the value of p. is indicated on Fig. 1. 

Obviously at q = - 1 the trajectories of system (3) and the trajector- 

ies of system (4) appear within zone G as circular arcs with their centers 

at a point with coordinates [ = - 1, 6 = 0. 

It should be noted that in the vicinity of curve ABC0 the functions 

a1 and a are of the second order of smallness, 

derivatices of df ./a 
and that only the first 

x. enter into conditions 1 to 4 of Theorem 4.1 of 

[ 11 . For these re:soni the trajectory ABCO, which is optimal for the 

1 inear system (31, satisfies (as can be easily verified) conditions 1 to 

4. (We should also note that this trajectory satisfies conditions of the 

principle of a maximum [21 ). 

We can now verify by direct calculations that it is possible, at suffi- 

ciently large values of 0 > 0, to choose an admissible function q(t) in 

such a way that it would satisfy conditions (2) and which, at the same 

time, would correspond to the trajectory [(to, Lo, t, q), <(co, co, t, q) 

of system (3), which connects point (to = - 3, co = 0) and point (5 = 0, 

< = 0); this trajectory would also have a smaller time length than the 

trajectory ABCO. 

Moreover, the trajectory [(to, co, t, ‘I). <(t,, <o, t, 7) may pass as 
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near as is desired to the curve ABCO, while the variations of 6~) of func- 

tion q’(t) (that is, the magnitudes of 8~ = q(t) - q’(t)) may be as small 

Fig. 1. 

as is desired. We will not include here the details of all such calcula- 

tions, but we will establish the correctness of our assertions by means 

of simple graphic representations. 

First, we .wfll assume that function q(f) is replaced in the right side 

of system (3) by function 

31 (tf==?’ (t) t Wz (t-+0> -i- EYE (t - +0--x) 

where 6(t) represents the 8-function, ,u, y are some sufficiently small 

positive constants, and c > 0 is some arbitrarily small constant, given 
D priori. 

Fig. 2, 

Outside zone G we have d@/dt = - I at f f I/+,, t f x,$, + n; within zone 
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C in the vicinity of curve ARC0 we have 

dp 
--_(__ 1 
dt ’ 

‘13 
;/7 < - 1 - 30 (p - PO)” 

(6) 

where fi is a positive constant,. For the above reasons the trajectory of 

system (31, which corresponds to such a function vl(f) and which passes 
through point lo = - 3. [, = 0 at t = 0 (when [I. and y (p = y) are pro- 

perly chosen) will be of the form ARICIDIO shown nn Fig. 2. 

This trajectory will reach some point E1 (Fig. 2) at an instant t = T 

where T1 is smaller than the period of time t = T needed by a point 

moving along the trajectory ABC0 to reach point E1. From (6) we obtain 

the expression 

T1 ~~ T < oiv1;~2;? (V, > 0 - COllSl) (7) 

If we designate by E that point which is reached by the trajectory 

ARC0 at t = T1, we will also obtain the inequality 

SE - .&$ 2 vo;1’;2 iv > 0 - const) (8) 

For the time being we will consider ~1 as a fixed quantity and we will 

allow y to vary within the limits of 

0 < ‘:’ < 2\* (9) 

In this case the termini of the trajectories of system (3), which at 

t = 0 come out of point 4, = - 3, co = 0, and which correspond to the 

instant t = T1, will lie on the segment NINZ of some curve (Fig. 2). 

Let us now examine functions x,(t), AZ(t) defined by formulas 

We will construct the trajectories of system (3) starting at point 

5, = - 3, 5, = 0 at t = 0 and corresponding to the governing function 

-6 (t) rz -ly (t) $ Eilhl (t) + Z:‘?,? (t) 

Obviously, function q(t) will represent the admissible governing 
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functions satisfying conditions (2) at any c << 1. The termini of the 

trajectories [(t,, co, t, q), 5(4,, co, t, q), which correspond to moment 

the t = T1 for 0 < y < 2, and which at all the fixed values of /t > 0, 

6 > 0, will lie on some continuous curve P1P2. The distance between the 

points on this curve and the points on segment N1N2 will be of the second 

order of smallness in their 1~ and will satisfy the inequality (for small 

values) 

where the constant A is independent of w. 

We can now conclude from the inequality (8) that when the chosen 

quantity o is sufficiently large and when all the values of 1~ > 0, c > 0 
are sufficiently small, the curve PIP2 will intersect arc CO at point F 

lying farther to the left than point E. This fact indicates that the 

corresponding trajectory ARFO of system (3) reaches point [ = 0, 5 = 0 

in a shorter period of time then does a point moving along the trajectory 

&5,* r,, t, 77% M,, z,, t, 7’) which is controlled by function qO( t). 

Our assertion is proved. 
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